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ABSTRACT
Following [4] we extend and generalize the game-theoretic model
of distributed computing, identifying different utility functions that
encompass different potential preferences of players in a distributed
system. A good distributed algorithm in the game-theoretic context
is one that prohibits the agents (processors with interests) from de-
viating from the protocol; any deviation would result in the agent
losing, i.e., reducing its utility at the end of the algorithm. We dis-
tinguish between different utility functions in the context of dis-
tributed algorithms, e.g., utilities based on communication prefer-
ence, solution preference, and output preference. Given these pref-
erences we construct two basic building blocks for game theoretic
distributed algorithms, a wake-up building block resilient to any
preference and in particular to the communication preference (to
which previous wake-up solutions were not resilient), and a knowl-
edge sharing building block that is resilient to any and in partic-
ular to solution and output preferences. Using the building blocks
we present several new algorithms for consensus, and renaming as
well as a modular presentation of the leader election algorithm of
[4].
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1. INTRODUCTION
A central issue in distributed computing, if not the main point, is

multi-processor computing in the face of faulty processors. Many
different faults are considered, from fail-stop to Byzantine faults.
Recently, a new model, that of distributed game theory has emerged,
in which processors, now called rational agents, are not faulty but
may cheat in order to increase their profit according to some utility
function [4, 1, 18, 2, 5].

For example, if an agent can cheat and cause an election algo-
rithm to elect itself as a leader the agent profits one dollar, or if
it can cheat causing a consensus algorithm to agree on 1 although
its input was 0, then its profit is again some positive value. A ba-
sic property of the utility function considered in all cases, which is
called solution preference, captures the notion that agents cannot
gain if the algorithm fails (a zero profit is assigned to all the agents
if the algorithm fails). As a result, though agents have preferences,
they have no incentive to fail the algorithm.

The challenge for distributed algorithms in the context of game
theory is to design algorithms that reach equilibrium, i.e., such al-
gorithms in which the players, agents, have no incentive to cheat.
That is, for any utility function materializing any combination of
preferences, the algorithm should ensure that in any run the agents
lose, or gain absolutely nothing, by deviating from the algorithm
(trying to cheat). The algorithm, therefore, needs to govern the be-
havior of the rational agents and to punish agents (reducing their
profit) for any deviation from it.

We present a comprehensive examination of the preferences and
utilities of rational agents in a distributed network setting, building
on the results presented in [4]. We take a closer look at factors that
might affect the utilities of such agents in a distributed setting, and
the actions that they may take as a result of these factors. Based on
this examination, we provide a refined game-theoretic model which
encompasses these preferences and gives insight to natural utilities
that rational agents in a distributed setting may have. Specifically,
we examine factors such as an agent’s possible preference for a
certain output or an agent’s desire to send fewer messages.

Having identified the major factors which could influence the
agents’ utilities and modeled them, we go on to present building
blocks for solving common problems in distributed computing which
are resilient to this rational behavior. Such operations include per-
forming wake-up and knowledge sharing in a variety of network
topologies. In a network with n agents, our protocols achieve (n−
1)-strong equilibrium for synchronous networks and n

2 -strong equi-
librium for asynchronous networks. Informally, a protocol which
achieves k-strong equilibrium is a protocol in which no coalition of
size at most k can improve its utility by deviating from the proto-
col. These protocols are in fact building blocks which can be used
to construct many other distributed algorithms for rational agents.
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Finally, we demonstrate the usefulness of the two building blocks
in the construction of new algorithms that achieve strong equilib-
rium for consensus, renaming, and reconstructing the leader elec-
tion algorithms of [4].

1.1 Related Work
The work of Abraham, Dolev and Halpern [4] goes back and

questions the fundamental problems in distributed computing, un-
der the assumption that processors may behave as rational agents.
In their work they have examined, among other things, protocols
for various settings of the leader-election problem that not only deal
with acquiescent or Byzantine processors but also with the rational
processors.

It seems that the connection between distributed computing and
algorithmic game-theory stemmed from the problem of secret shar-
ing. One such example, where k-out-of-n secret sharing [28] comes
in handy, is when participants do not fully trust each other with a
secret, yet they would like to reconstruct it using their private parts
of the secret, when there is an acceptance of more than k partici-
pants. It seems that known solution to the secret sharing problem
do not handle the reconstruction phase, that can be modeled as a
synchronous network of n processors, where each of them wants
to learn the secret and also prefers that as few other processors as
possible will learn the secret. This raises an interesting question:
is there a protocol with a fixed running time that solves the prob-
lem? Halpern and Teague showed [18], among other things, that
the problem cannot be solved with a bounded distributed protocol
for the solution concept of iterated admissibility (i.e., iterated dele-
tion of weakly dominated strategies). Further works continued the
research on secret sharing and multiparty computation when both
Byzantine and rational agents are present [2, 8, 13, 16, 23, 17]. At
the same time, another line of research has shown applicative and
theoretical results for cooperative services for what is known as the
BAR model (Byzantine, acquiescent [33] and rational) [5, 26, 33]
. Another related line of research asks whether a problem that can
be solved with a mediator can be converted to a cheap talk based
solution [2, 3, 6, 7, 9, 11, 21, 22, 24, 29, 30, 31]. This approach
is very strong because there are many results that are based on a
mediator, which other players cannot trust under the rationality as-
sumption, if we can convert mediator based protocols to be based
on cheap talk, many of the previous works that do not assume ra-
tionality may become relevant under this assumption.

2. MODEL
Our model consists of n processors in a distributed network.

Each processor is a rational agent, and thus has preferences over
the outcome of the protocol. Whenever a processor can increase its
expected utility, it will deviate from any given protocol, in order
to benefit itself. For protocols to be resilient to rational agents, we
require them to reach equilibrium, such that agents have no incen-
tive to deviate from the protocol. To reach this, we require agents
to have a utility function satisfying the solution preference, such
that agents do not prefer an outcome of the protocol where there
is no solution to the problem, over an outcome in which there is a
solution.

Following [4] we use the standard message-passing model, where
all the processors are rational agents. The network is a simple,
strongly-connected, finite graph. Each node represents an agent
(i.e., a processor), and the edges represent communication links
through which pairs of agents exchange messages. Agents may
send messages through their outgoing links, and can identify the
link an incoming message is received over. Denote n the total num-
ber of agents in the network. Each agent is assigned a unique id

taken from a common name space, assumed to be the set of nat-
ural numbers. We assume that the topology of the network and n
are common information, thus they are a-priori known to all. Each
agent additionally knows its id and input, if it received any input as
part of the protocol, but not the id or input of any other agent.

In this paper, both the synchronous and asynchronous network
models are considered. In a synchronous network, agents execute
the protocol in rounds. Each round r consists of agents receiving
all messages sent on their incoming links in round r−1 (if r > 0),
performing any computations and updating internal variables, and
sending messages on their outgoing links. In the asynchronous net-
work we assume the standard asynchronous event driven communi-
cation model - in which message transmission delay is unbounded
but finite [15].

Three fundamental distributed computing problems are consid-
ered here; renaming, consensus and leader election.

The consensus problem: each agent p start with an input ip, and
its output op is initialized to ⊥. The processors must then agree on
the output. That is, the processors communicate, and at the end of
the protocol run (after all processors stop, assuming no processor
fails) ∀i∈ {1, ..,n},oi 6=⊥ and: (1) Agreement: for each processor
p, op = v for some value v; (2) Validity: if ∃ j s.t. o j = v, then there
is some processor k for which ik = v.

The leader election problem is the same as the consensus prob-
lem where the input of each agent is its id.

The tight renaming problem: each agent has a unique id and
needs to choose a unique name from the tight range 1 . . .n. Denote
op to be the agent’s output. Each agent p writes its new name in
op, satisfying the following requirements: (1) Agreement: No two
processors obtain the same new name. ∀x,y ox 6= oy; (2) Validity:
Each new name is an integer in the set [1 . . .n].

2.1 Game Theoretic Model
Unlike processors in the standard fail-stop or Byzantine models,

rational agents are not faulty. Instead, agents have preferences over
the outcome of the protocol. If an agent can improve upon its pref-
erences, it will deviate from the protocol (i.e., cheat).

For example, a rational agent p might prefer to send fewer mes-
sages in the protocol. In such a case, it might be lazy and not fully
participate in the protocol, or otherwise deviate from it in any way
in which its expected number of messages sent is as few as possi-
ble, so long as it does not cause the protocol to fail.

Formally, each agent p has a utility function up on the final states
of the protocol. The final state of the protocol encompasses the ex-
ecution leading to the state as visible by p and the output of the
protocol in this final state. The utility function represents how good
or profitable the result is, from p’s point of view. The higher the
utility, the better. An agent can have any utility function represent-
ing any preference; it can have a preference over the output of the
algorithm, the number of messages it has sent, the amount of com-
putation it does, or any other preference or combination of prefer-
ences, so long as the algorithm terminates in a legal global state,
satisfying the solution preference (definition 2.1, below).

Let c be the state of p in the protocol execution, and let Sp be
the set of all possible final states that may be reachable and are
consistent with the current state of p, assuming all agents other than
p follow the given protocol and the next step of p is op, which may
be deviating from the protocol (i.e., cheating). For each final state
s ∈ Sp, let xs be the probability, estimated by p, that s is reached by
taking the step op. The expected utility of p after taking step op in
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state c is then:

Ec,op
[
up
]
= ∑
∀s∈Sp

xs ·up(s)

If by deviating from the protocol by taking a step op, p can in-
crease its expected utility, we then say that agent p has an incentive
to deviate from the protocol (i.e., cheat).

For example, in the consensus problem, an agent p might have a
preference over the agreement value, such that it prefers an agree-
ment on 1 over an agreement on 0. Its utility function up might look
as follows:

up =

{
1 1 is decided
0 0 is decided or no agreement is reached

At every point during the protocol execution, p estimates the
probability for each possible outcome of the protocol, according
to its knowledge while assuming all other agents follow the given
protocol. Let x be the probability, estimated by p, that the protocol
outcome results in an agreement on 1, then the expected utility of
p is the following:

E
[
up
]
= x∗up(1)+(1− x)∗up(0)

Since p is a rational agent, it will deviate from the protocol when-
ever it can increase its expected utility by any positive value.

To prevent rational agents from deliberately failing the algorithm
(i.e., becoming Byzantine rational agents), we assume agents have
utility functions that penalize the agents if the protocol errs. The
solution preference guarantees that an agent never has an incentive
for the protocol to fail.

DEFINITION 2.1 (SOLUTION PREFERENCE). Let O be the set
of all possible executions of the protocol. Let oL ∈ O be a legal
execution of the protocol (e.g., producing a legal output), and let
oE ∈ O be an erroneous execution of the protocol (e.g., produc-
ing an illegal output). To satisfy the solution preference, the utility
function up of an agent p must satisfy the following:

∀oL,oE : up(oL)≥ up(oE)

Meaning, the utility function up of an agent p never assigns a
higher utility to an outcome of the protocol in which there is either
no solution or an erroneous solution than to an outcome in which
there is a legal global solution.

We say that a protocol is resilient to rational behavior if it reaches
Nash equilibrium. A protocol that reaches Nash equilibrium is guar-
anteed to execute correctly in the face of rational agents, with no
agent being able to improve its utility by deviating from the proto-
col.

DEFINITION 2.2 (NASH EQUILIBRIUM PROTOCOL). A pro-
tocol is said to reach Nash equilibrium if no agent can unilaterally
increase its expected utility by deviating from it while assuming that
all other agents follow the given protocol.

While Nash equilibrium deals with a single agent deviating from
the protocol, sometimes agents are in coalitions, working together
to improve their utilities. We define a coalition of size t as a set of t
rational agents.

We say that a protocol is resilient in the face of coalitions if it
reaches strong equilibrium. A protocol that reaches t-strong equi-
librium is guaranteed to execute correctly, with no coalition of k

agents, where k ≤ t, being able to improve its utility by deviating
from the protocol, even in a coordinated way.

DEFINITION 2.3 (t-STRONG EQUILIBRIUM PROTOCOL). A pro-
tocol reaches t-strong equilibrium if no coalition of size k ≤ t can
increase the expected utility of one or more agents in the coalition
by deviating from the protocol, assuming all agents not in the coali-
tion follow the given protocol.

In game theory, a game requires three things: players, the play-
ers’ utilities, and the strategies available for each player. The dis-
tributed model with rational agents that we discuss in this paper,
fulfills this paradigm in the following manner: 1) The set of players
P is the set of all agents (i.e., processors) in the network. 2) Each
player p ∈ P has a utility function up, which can be any function
that satisfies the solution preference (definition 2.1). 3) The strat-
egy of each player p determines the messages that p sends. Player
p can choose to send none, one, or several messages at any point in
the protocol, and by that it executes its selected strategy.

2.2 Truthfulness
Consider a consensus protocol which reaches agreement by de-

ciding on the maximum value of all agents. Consider an agent p
with the utility function up from the consensus example in the pre-
vious subsection. Agent p has an incentive to lie about its input:
provided it received an input of 0, it benefits by claiming an input
of 1, since it raises the probability of 1 to be decided, thus raising its
expected utility. In an execution where all agents start with an input
of 0, agreement of 1 is reached, and thus the consensus fails since
the validity requirement is violated. This shows that, even though
each agent satisfies the solution preference, it is not enough in order
to solve protocols in the game-theoretic model.

To overcome this, in game theory we design mechanisms that are
truthful, such that agents do not have an incentive to lie about their
input, regardless of any a-priori knowledge they may have of the
input or strategies of other players.

However, in distributed protocols, though we assume no a-priori
knowledge exists, such a requirement is not enough. Distributed
protocols allow agents to deviate by lying about the values of other
agents. Thus, even though we might design a truthful mechanism
in which an agent does not have an incentive to lie about its input,
in a distributed environment it might still have an incentive to lie
about the values of other agents.

For example, a well-known mechanism in game theory is second
price auction [32]. In it, the players are bidders submitting bids for
an item. Each player has a private value vi which is its value for the
item, and submits a bid bi to the auctioneer. The winner of the item
is the player who sent the highest bid, and he pays a value equal to
the second-highest bid. Let b j be the second-highest bid, then the
utility of the winner i is defined as vi− b j. The utility of all other
players is 0.

This mechanism is known to be truthful, such that players have
no incentive to bid any value other than bi = vi, even if they know
the values and submitted bids of all other players.

However, in a distributed network, not all agents are necessar-
ily directly linked to the auctioneer in the network. Thus, they may
need to communicate through other agents in the network. These
agents may lie regarding their input. An agent p, separating some
bidders from the auctioneer, has a clear incentive to send bi = 0 for
each agent i sending its bid in the network through p, thus increas-
ing p’s chances of winning the item, and possibly also decreasing
the amount paid for it. This is true even if p is truthful with regard
to its own input, having no incentive to send a bid other than its true
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value for the item, i.e., bp = vp.

Following this example, we can clearly see that the existing def-
inition of a truthful mechanism is not enough. For distributed pro-
tocol to be truthful, we require agents to have no incentive to lie
regarding not only their input, but also the input of other agents.

DEFINITION 2.4 (TRUTHFUL PROTOCOL). A protocol is said
to be truthful if no agent participating in the protocol has incentive
to lie about its input, or any other data it shares as part of the pro-
tocol. Meaning, an agent’s utility for an outcome achieved by lying
is no greater than its utility achieved by telling the truth.

3. AGENTS WAKE-UP
In many distributed computing protocols, we assume that all

agents start the protocol at the same time. However, this is usually
not the case. Usually, processors are either woken up spontaneously
at arbitrary points of time by the scheduler, or when receiving the
first message over one of their input links.

The agents wake-up building block deals with waking up all
agents. The building block can be executed as the first phase of
any protocol, thus ensuring all agents are awake and start together.

A protocol for the building block starts by having agents wake-
up at arbitrary points of time by the scheduler. The agents need
to communicate so that, at the end of the protocol, all agents are
awake. The protocol makes sure that, upon termination, agents also
know the ids of all other agents. In addition, the protocol needs to
succeed in the face of rational agents—the building block reaches
t-strong equilibrium for t < n.

A wake-up procedure was included within each of the leader
election protocols presented in [4]. However, it does not reach Nash
equilibrium. The protocol fails in the presence of lazy rational agents,
that prefer sending fewer messages, in the following way:

Consider a wake-up procedure that requires agents to send and
forward messages around the ring, where only messages of the
agent with the highest id are forwarded. Consider an agent p with
a preference for sending fewer messages having, for example, the
following utility function, where mp denotes the number of mes-
sages p sends:

up =

{
1− mp

n wake-up is successful
0 wake-up is unsuccessful

In the procedure, each agent sends no more than n messages, thus
up satisfies the solution preference (definition 2.1).

When p wakes up, it prefers not to send any wake-up message.
It relies on another agent to wake up the others, doing the work
for it—thus raising p’s expected utility. In addition, if p is the only
agent to wake-up spontaneously, no solution will be reached and
the protocol will fail.

Even though it is possible that no solution will be reached, the
utility up satisfies the solution preference (definition 2.1). This is
because only the expected utility of p is raised, so p will "take the
chance" of failing the protocol, given the positive probability that it
will not fail and p will benefit.

The wake-up protocol must be resilient to the utility function
discussed in the above example, and to any other utility function
satisfying the solution preference (definition 2.1).

Another possible preference an agent might have is a preference
over properties of its id. While the building block itself is oblivious
to the agents’ ids, it might be used by a protocol that is not.

For example, consider a leader election protocol that is run over
the wake-up building block, where the agent with the highest id is
elected leader. If we execute the protocol, an agent might have an
incentive to lie about its id. Consider an agent p with the following
utility function:

up =

{
1 p is elected leader
0 p is not elected leader, or no leader is elected

Agent p will deviate from the building block by lying about its
id. It prefers to send messages and pretend to have the highest id.
While it is possible that another agent will have the same id that
p lied about, according to up it still raises its expected utility by
raising its chances to be elected leader.

Following this example, for the building block we assume that
the protocols built on top of the wake-up building block are obliv-
ious to the agents’ ids. Indeed, in [4], a leader election protocol is
suggested which elects the leader by choosing a random id. This
ensures that an agent’s specific id has no affect on the outcome of
the protocol (the elected leader), and thus it can be preceded by the
wake-up building block proposed here.

With these possible utilities in mind, we present protocols for
the wake-up building block. In a synchronous network, all agents
complete the protocol in the same round. The protocols reach t-
strong equilibrium for t < n, for n rational agents with any utility
function that satisfies the solution preference (definition 2.1).

The idea behind our procedure in order to achieve these prop-
erties, and prevent an agent from not sending wake-up messages
when it should, is to require all agents to send wake-up messages.
An agent does not finish the protocol before receiving wake-up
messages from all other agents. Thus, an agent that does not send a
wake-up message causes the protocol to fail, in contradiction to the
solution preference (definition 2.1). A detailed description of the
protocols and full proofs are provided in the full paper.

3.1 Ring Wake-Up Protocol
The protocol for wake-up in a ring is as follows: upon waking up,

each agent sends a wake-up message that goes around the ring. An
agents finishes the protocol when it has received a wake-up mes-
sage from all other agents.

The wake-up message contains both the id of the originator of
the message, and a hop counter k—initialized to n−1 by the orig-
inator, and decremented by each successor. This counter k repre-
sents the distance from the current recipient to the originator, in the
direction of the message.

For a bidirectional un-oriented ring, each agent arbitrarily de-
cides on a direction for its wake-up message. When agents receive
messages on one link, they forward it on the other link. When fin-
ished, the ring orientation can be decided according to the direction
chosen by the highest id. Thus, for a bidirectional ring, we further
assume that the direction of the messages is irrelevant, and no agent
has a preference on the direction (i.e., clockwise or counterclock-
wise).

3.2 Complete Network Wake-Up Protocol
The protocol in a complete network is as follows: upon waking

up, each agent sends a wake-up message containing its id to all
agents. An agent finishes the protocol when it has received a wake-
up message from all other agents, and has sent wake-up messages
to all other agents.
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3.3 General Network Wake-Up Protocol
The protocol for a general network is as follows: upon wak-

ing up, each agent broadcasts a message containing its id through
the network. An agent finishes the protocol when it has received a
wake-up message from all other agents, i.e., n wake-up messages,
as n is known a-priori.

In a synchronous network, this protocol is not enough. Since this
is usually a preliminary building block, we require agents to finish
the protocol in the same round, i.e., start together the next step of
the protocol using this building block. To this end, a hop counter
k is attached to each broadcast message, initialized to 0 and incre-
mented in each hop. When a wake-up message is received by an
agent, it can determine from the hop counter the round in which the
originator of the wake-up started broadcasting. Once an agent re-
ceives all n wake-up messages, it can tell the earliest round at which
an agent woke up. To end in the same round, an agent terminates
2n rounds after that first round.

Unlike the previous wake-up protocols, the protocol for a general
network has an additional requirement.

CLAIM 1. To reach t-strong equilibrium for t < n, the underly-
ing topology must be at least (t +1)-connected.

Sketch of proof: Assume by contradiction that the network is not
(t + 1)-connected, then a coalition of t agents might separate two
parts of the network. Such a coalition can be lazy and decide not
to wake up one of the separated parts, instead making up ids for
that part and sending it to the rest of the network, essentially faking
the participation of agents in that part of the network, thus sav-
ing itself from sending some messages. The protocol thus does not
reach equilibrium. That is a contradiction, thus the network must
be at least (t +1)-connected.

4. KNOWLEDGE SHARING
In many distributed algorithms, each process needs to know the

private values of all other processes in order to perform the de-
sired computation. The knowledge sharing building block deals
with sharing the private values among all agents.

Facing rational agents poses a problem that an agent, once it
knows all other values, might lie about its own value to increase its
utility. Thus, the presented protocols for the building block make
sure that each agent commits to its own value before learning the
values of all other agents.

Each agent p starts with a value vp, and needs to learn the values
of all other agents V = {v1, . . . ,vn}. For this building block, we as-
sume agents know the ids of all other agents. If not, we can simply
precede it with the agents wake-up building block.

A solution for knowledge sharing seems trivial: each agent broad-
casts its value to all other agents. Once an agent receives the values
V of all other agents, it terminates. However, this solution does not
reach equilibrium. An agent can easily cheat regarding its value in
order to increase its utility.

For example, consider a leader election protocol executed using
this building block, where the leader is elected in the following
way: Each agent’s value is a random number, and the sum of all
numbers mod n is the rank of the id elected leader. If we execute
the protocol in the game-theoretic model, an agent might have an
incentive to lie about its value.

Consider an agent p with the following utility function:

up =

{
1 p is elected leader
0 p is not elected leader, or no leader is elected

Agent p might prefer to delay its participation in the protocol, so
that it knows the values of all other agents. Once p knows all values
V , it can then lie about its own value vp—ensuring that it is elected
as a leader.

Adapting the same techniques used in [4] to overcome this issue,
we ensure that no agent learns the values of other agents before
sending its own value. In addition, when facing coalitions, the pro-
tocols make sure that agents outside the coalition learn the values
of all agents in the coalition before agents in the coalition learn the
values of all other agents.

No matter how protocols for the building block are built, if it is
used by a protocol that is not truthful (definition 2.4), an agent can
have an incentive to lie about its value, regardless of the knowledge
sharing protocol.

For example, consider a consensus protocol built on top of this
building block, that decides on the maximum value of all agents.
If we execute the protocol in the game-theoretic model, an agent
might have an incentive to lie about its value. Consider an agent p
with value vp ∈ {0,1}, with the following utility:

up =

{
1−d the consensus decision is d
0 no consensus is reached

In an execution where vp = 1, agent p prefers broadcasting vp =
0. In case p is the only agent with an input of 1, the protocol decides
0 instead of 1 and p benefits. Otherwise, the decision remains the
same and p does not benefit, but does not lose, either. Therefore, p
raises its expected utility by deviating from the protocol, and thus
it does not reach equilibrium.

In addition, consider an execution where all agents have the util-
ity up, but all received 1 as input—the agents all broadcast the value
0, which is decided. It was not the input of any agent, and thus the
validity requirement is violated.

This shows that, while the knowledge sharing building block
does not violate truthfulness, it is dependent upon the full knowl-
edge property of the protocols that use it. Therefore, according to
4.1, any protocol that uses the knowledge sharing building block
must make sure that it satisfies the full knowledge property for the
entire algorithm to be truthful.

DEFINITION 4.1 (FULL KNOWLEDGE PROPERTY). For each
agent that does not know the values of all other agents V = {v1, . . . ,vn},
any output of the protocol is still equally possible.

For example, even though the previous example shows that the
consensus protocol fails with this building block, it is possible to
achieve agreement with this building block. The consensus pro-
tocol shown in that example does not satisfy 4.1, since an agent
can lie about its value in order to affect the outcome of the pro-
tocol, without knowing the values of other agents, thus raising its
expected utility. In 5.3, however, we show a protocol that reaches
agreement while satisfying 4.1, thus using the knowledge sharing
building block properly.

With these utilities in mind, we present protocols for the knowl-
edge sharing building block. The building block assumes the fol-
lowing: each agent p starts with a value vp, agents know the ids of
all other agents, and, in synchronous networks, all agents start the
protocol together.

The protocols reach t-strong equilibrium, where t < n for syn-
chronous networks and t < n

2 for asynchronous networks, for n ra-
tional agents with any preference that satisfies the solution prefer-
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ence (definition 2.1), and any value that satisfies the full knowledge
property (definition 4.1). In a synchronous network, all agents com-
plete the protocol in the same round. A detailed description of the
protocols and full proofs are provided in the full paper.

4.1 Knowledge Sharing in a Synchronous Ring
Network

In round 1, each agent p sends a message with its value vp. These
messages are passed around the ring by all the agents, until each
message returns to its originator. At this point, all the agents have
received all of the data. If an agent p does not receive a single mes-
sage from its predecessor each round, or receives a duplicate mes-
sage it received before, it sets op = ⊥, thus ensuring the correct
participation of all due to the solution preference (definition 2.1).
The message complexity of the protocol is n2, and the time com-
plexity is n rounds.

4.2 Knowledge Sharing in a Synchronous Com-
plete Network

The protocol consists of a single round, in which each agent
sends its value to all other agents, and receives the values of all
other agents. If an agent p does not receive messages from all
agents, it sets op =⊥, thus ensuring the correct participation of all
due to the solution preference (definition 2.1). The message com-
plexity of the protocol is n2, and the time complexity is 1 round.

4.3 Knowledge Sharing in an Asynchronous
Ring Network

The synchronous ring solution does not work in an asynchronous
ring. Agents can not determine when to send and forward messages,
and we can reach a state in which an agent might learn the values
of all other agents before sending its own value to its successor.
The agent might then have an incentive to lie about its value, as
described in the leader election example, above.

To solve this issue, we propose a protocol similar to the one sug-
gested in [4] for leader election in an asynchronous ring. We have
the agent p with the lowest id be the originator, which starts the
protocol by sending its value to its successor. Its successor then
sends a message with its own value to its own successor, and so
forth.

Messages are passed around the entire ring in the same manner.
When the originator receives a message from its predecessor, this
is an indication that the first cycle, in which each agent learned
the value of its predecessor, has completed and the initiator begins
the second round of messages by sending the value of its prede-
cessor to its successor. Messages are passed around the entire ring
again, in the same manner, where each agent sends the data of its
predecessor. From cycles 2 to n− 1, each agent sends the value it
has received in the previous cycle, s.t., in round v agent u sends
the input value of agent u− v+ 1 mod n. It is easy to see that the
message and time complexity of the protocol is n(n−1).

4.4 Knowledge Sharing in an Asynchronous
Complete Network

For an asynchronous complete network, we can use the protocol
presented in 4.3 for knowledge sharing in an asynchronous ring
by embedding a unidirectional ring in the network. We embed the
ring by sorting the ids of all agents from lowest to highest. Each
agent’s successor is the agent with the id following its own on the
list. The successor of the agent with the highest id is the agent with
the lowest id, thus forming a ring.

However, the added connectivity of a complete network hurts the
coalition resiliency of the protocol in 4.3. While a coalition of size

t < n
2 still must commit to its data before learning the data of all

other agents, it can still break the protocol in 4.3.
Since the network is completely connected, any two agents in the

network can communicate directly with each other, even if they are
not neighbors in the embedded ring. Splitting the ring into two (or
more) parts, agents in a coalition can share information and thus lie
to the split parts of the ring regarding the input of the other part.
This way, the coalition can make sure that the protocol succeeds
(all agents have a valid output); however, the coalition has control
over the outputs and can therefore alter the input messages sent in
order to reach an output they prefer.

To prevent this, we use the added connectivity to our benefit.
Upon finishing the protocol in 4.3, each agent sends its value to all
other agents. This prevents agents from being able to lie regarding
the values of other agents, thus making agents are truthful regarding
the values that they send.

4.5 Knowledge Sharing in a Synchronous Gen-
eral Network

For a synchronous general network, we use a similar protocol
to 3.3 for wake-up in a general network. Each agent p broadcasts
its value vp through the network. Once p receives the values of all
other agents, it terminates.

If an agent p receives contradicting messages, or does not receive
all values after n rounds, it sets op =⊥ and terminates, thus ensur-
ing the correct participation of all due to the solution preference
(definition 2.1).

As in the wake-up protocol in 3.3, the knowledge sharing pro-
tocol for a synchronous general network has an additional require-
ment:

CLAIM 2. To reach t-strong equilibrium for t < n, the underly-
ing topology must be at least (t +1)-connected.

Sketch of proof: Assume by contradiction that the network is not
(t+1)-connected, then there is a group of no more than t agents that
split the graph. Assume that these agents form a coalition. Then, for
any knowledge sharing protocol, the agents can cheat by lying on
the input values of agents connected in the network only through
the coalition.

The message complexity of the protocol is n2, and the time com-
plexity is n rounds.

5. USING THE BUILDING BLOCKS
Here we demonstrate the building blocks approach [14] by pre-

senting Leader election, Renaming and Consensus algorithms that
are truthful and reach Nash equilibrium building on the agents wake-
up and knowledge sharing building blocks.

The protocol for leader election mostly borrows the ideas pre-
sented in [4]. However, it demonstrates how to adjust a problem
to meet the requirements of the building blocks. In the protocols
for renaming and consensus, we demonstrate how to use the build-
ing blocks further, for more complicated problems with less trivial
solutions.

5.1 Leader Election
Here is a building blocks construction of the leader election al-

gorithm of [4]:

PROTOCOL 5.1 (GAME-THEORETIC LEADER ELECTION). For
each agent p:

(1) Initiate the wake-up building block.
(2) Let vp = random(1, . . . ,n).
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(3) Knowledge sharing to learn V = {v1, . . . ,vn}.
(4) For any k, if (vk < 1) or (vk > n), set op =⊥ and terminate.

(5) Calculate (N =
n
∑

k=1
vk mod n), and output: op ← (the N-th

rank id).

It is easy to see that protocol 5.1 follows the requirements of
our building blocks, and correctly elects a leader while reaching
equilibrium.

5.2 Renaming
Having a solution to the leader election problem that reaches

equilibrium under the game-theoretic model, there seems to be a
naive renaming protocol: execute leader election, then the leader
randomizes the new names and sends them to all agents. However,
this naive protocol does not reach equilibrium; the leader might
have a preference for a certain assignment of names, and can as-
sign them as it sees fit.

With that in mind, another possible protocol is to execute the
leader election protocol n times. Each execution, the leader is given
a name from [1 . . .n], in order, and removed from the list of possible
leaders for the next execution. While this protocol solves the prob-
lem, it has a very high message and time complexities. In addition,
perhaps requirement 2.1 is too strong? We can think of a case where
an agent cares only about certain names (or a single name), and not
the entire solution.

For example, consider an agent p with the following utility:

up =

{
1− mp

n2 p knows its new name and sent mp messages
0 p does not know its new name

While up does not satisfy the solution preference (definition 2.1),
it is still a reasonable utility to consider. Thus, once the agents have
chosen a new name for p, it will stop sending messages and no
longer participate in the protocol, thus raising its utility. Thus, the
protocol does not reach equilibrium. In addition, the protocol fails
and chooses no new names after the new name of p.

To solve this issue, we propose a protocol for one-shot renaming—
where either all new names are chosen, or none is. With one-shot
renaming, an agent can learn its new name only if all new names are
assigned to all agents. Thus, the protocol reaches equilibrium, even
when facing an agent with the preference presented in the above
example.

The protocol is similar to the protocol presented in 5.1. However,
instead of randomizing a single number, each agent randomizes n
numbers, essentially running n leader elections simultaneously. The
agents then share all n2 numbers, and assign new names accord-
ingly. The protocol works as follows:

PROTOCOL 5.2 (GAME-THEORETIC RENAMING). For each
agent p:

(1) Initiate the wake-up building block.
(2) Choose a set of n random numbers as value:
∀k ∈ {1, . . . ,n} :vp[k]← random(1, . . . ,k).

(3) Knowledge sharing to learn V = {v1, . . . ,vn}.
(4) For any k, j, if (vk[ j] < 1) or (vk[ j] > j), set op = ⊥ and

terminate.
(5) Calculate the set of sums:

∀ j ∈ {1, . . . ,n} :N j =
n
∑

k=1
vk[ j] (mod j).

The agent with the Nth
n highest id is assigned the new name n, and

then removed from the list of ids, thus it is ignored in the following

iterations. The agent with the Nth
n−1 highest id is then assigned the

new name (n−1) and removed from the list of ids, and so on.
(6) Set op to p’s new name as calculated in the previous step.

This randomization makes sure that each name chosen is ran-
dom, thus satisfying the full knowledge property (definition 4.1).
Again, it is easy to see that it satisfies all of the requirements for
the building blocks, and assigns new names while reaching equi-
librium.

5.3 Consensus
In [4], it is implied that the consensus problem can be solved in

the presence of rational agents by electing a leader, and having the
leader choose the consensus value as its input. However, this algo-
rithm does not reach equilibrium, and may not uphold the validity
requirement even if only one rational agent is present. The elected
leader may have a preference over the agreement value, and thus
has an incentive to lie about its input. It takes the chance of reach-
ing no agreement, but its expected utility is raised overall, thus it
benefits.

We can execute the building blocks, where the value for knowl-
edge sharing is each agent’s input to the consensus problem. How-
ever, how we calculate the decided value after the knowledge shar-
ing is critical.

For example, agreeing on the maximum value of all agents does
not work in the presence of ration agents, and does not reach equi-
librium. An agent p with a preference for agreement on 1 has a clear
incentive to share a value vp = 1, even if its input to consensus was
0. Thus, we propose the following protocol for truthful consensus:

PROTOCOL 5.3 (GAME-THEORETIC CONSENSUS). For each
agent p:

(1) Initiate the wake-up building block.
(2) Knowledge sharing to learn V = {v1, . . . ,vn}.
(3) For any k, if vk /∈ {0,1}, set op =⊥ and terminate.
(4) If the total number of 1’s is odd or equals n, set op = 1, else

set op = 0.

First, it is clear that without rational agents, the protocol solves
consensus. In addition, since deciding according to the parity of all
of the values, agents can not affect the outcome. An agent might
learn the values of all agents but 1, and still has no incentive to
lie about its value, as it can not determine what influence it will
have on the decision, thus it satisfies the full knowledge property
(definition 4.1).

When the number of agents n is odd, the protocol is truthful (defi-
nition 2.4), since no agent can benefit by lying about its input. How-
ever, when n is even, it is not satisfied. If, for example, a coalition
of (n− 1) agents have a preference to agree on 1, each agent p in
the coalition can lie such that vp = 1. In such a case, the agreement
will be 1, regardless of the remaining agent’s input, and thus we do
not reach equilibrium, and do not satisfy the validity requirement in
the case that the input of all agents is 0. To handle it, for networks
where n is even, each agent’s input for the knowledge sharing also
includes a random number, as in the leader election protocol 5.1,
thereby electing a leader at the same time. The input of the leader
is then considered twice in the computation, thus making the pro-
tocol truthful for even size networks as well.

The protocol satisfies all of the requirements for the building
blocks, and reaches agreement while reaching equilibrium.
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6. EXTENSIONS AND TRADEOFFS

6.1 Improving the Message Complexity of Knowl-
edge Sharing

In most of the protocols presented in this work, our main aim
was to obtain algorithms which would be most resilient to coali-
tions, even at the cost of increased message or time complexity.
To illustrate the tradeoff between the two approaches, we present
an alternative knowledge sharing protocol for a synchronous bi-
directional ring network. The protocol significantly improves the
message complexity, at the cost of reduced coalition resiliency.

The protocol KSP works as follows: We have the agent p with
the lowest id (after the wake-up) be the originator, which starts the
protocol by sending a message containing its value

〈
vp
〉

both to
its right and to its left neighbors, i.e., both clockwise and counter-
clockwise accordingly. Each agent q that receives a message con-
catenates its own value to the message such that the message is now〈
vp;vq

〉
and sends it to its neighbor in the direction in which the

message was travelling, i.e., clockwise or counter-clockwise. Each
message is sent one time completely around the ring until it gets
back to the initiator. This ensures that all agents receive all data.
However, messages are sent on both sides of the ring, thus agents
send their value before receiving the values of all other agents and,
due to the full knowledge property (definition 4.1), are guaranteed
to be truthful.

If the number n of agents in the network is odd, the protocol
works as-is. If n is even, the initiator sends the message to the right
in round 1, and to the left in round 2. This is needed to prevent
the possibility of some agent receiving both messages at the same
round which could allow that agent to modify the values in the
message in order to increase its utility.

The message complexity of the algorithm is O(n) rather than
O(n2) of the protocol presented in 4.1. The protocol is, however, a
lot less resilient to coalitions, as it can not withstand even a coali-
tion of 2 agents.

Furthermore, in some cases the bit-complexity of the above al-
gorithm can be further reduced. One such example is a protocol for
solving binary consensus. Our binary consensus protocol is based
on parity and can therefore be computed in an on-the-fly manner
using the following protocol: Two messages are initiated by the
agent with the lowest id, as described in the KSP protocol, but now
the messages contain 2 bits b1 and b2. Bit b1 is used to indicate
whether all inputs so far have only been 1 and is initialized to 1. Bit
b2 is initialized according to the value vp of the initiator, meaning,
if vp = 0, b2 is initialized to 0 otherwise b2 is initialized to 1. Each
agent q that receives a message does the following: if vq equals 0,
set b1 = 0, otherwise, switch the value of b2, that is, set b2 = !b2.
Continue to send the message as described above. Once each agent
has received both a message from the left and a message from the
right, it can compute the output of the consensus based on those 2
messages alone.

6.2 Fail-Stop Model
We extend our model to a fail-stop model with rational agents,

where an agent can fail by stopping (i.e., crashing) at any point
in the protocol. From that point on it does not participate in the
protocol—the agent can not send messages or perform computa-
tions, and any messages sent to it are discarded. A protocol is said
to be k-fault-tolerant if it can withstand up to k faulty agents, and
still produce a correct output for each of the non-faulty agents.

This model poses new challenges for solving problems in our
game theoretic model. In previous protocols, when an agent does
not participate, we "punish" it by failing the algorithm. Thus, we

ensure its correct participation, due to the solution preference (def-
inition 2.1). However, in the presence of faulty agents, such a solu-
tion will not work. An agent can fail-stop, stopping its participation
and preventing the protocol from reaching a solution to the prob-
lem. Thus, our previous protocols are not even 1-fault-tolerant.

A possible solution might be to proceed with the protocol, re-
gardless of which agents participate. However, this solution is clearly
not in equilibrium. For example, an agent preferring to send fewer
messages benefits by not participating. Thus, the agent pretends to
fail-stop and we do not (and can not) "punish" it. The protocol thus
does not reach equilibrium and, if all agents have that utility, none
participate and no solution is reached.

For this reason, in the fail-stop model we require agents to have a
knowledge preference. The knowledge preference makes sure that
agents not only prefer the protocol not to fail, but additionally pre-
fer to know at least part of the protocol’s output.

DEFINITION 6.1 (KNOWLEDGE PREFERENCE). Each agent
p prefers knowing some output of the problem (oq for some agent
q) to not knowing any of the output, in the weak sense that it never
assigns a higher utility to an outcome where it does not know oq
(for all q) to one in which it knows oq (for some q).

However, we are now faced with another problem. An agent can
"bail-out" of the knowledge sharing building block. According to
the protocol presented in 4.2, it will receive all data in the first
round, and thus know the output while saving itself the messages it
sends to other agents, thus raising its expected utility. Thus, we also
require the input ip of an agent p in the knowledge sharing building
block to be determined randomly, such that we can choose to restart
the protocol, and the input will be different. What this means is, we
can only execute our protocol for the fail-stop model to solve prob-
lems in which the input for the knowledge sharing building block is
random. This means that consensus, for example, can not be solved
by this protocol, but leader election and renaming can.

The protocols for the agents wake-up and knowledge sharing
building blocks are similar to those presented in 3.2 and 4.2, for
a synchronous complete network. However, whenever an agent p
stops sending messages when it is expected to, we "restart" the
protocol without it—executing the agents wake-up or knowledge
sharing building block again from the beginning, as if p is not part
of the network. Whenever we restart the protocol, all inputs are
randomized, as described above. Thus, an agent p not participat-
ing in the protocol does not know any output of the protocol, thus
ensuring its correct participation due to the knowledge preference
(definition 6.1). After at most k restarts, we are guaranteed to have
an execution where no processor fail-stopped, and thus the protocol
is k-fault-resilient for k < n.

While the fail-stop protocol reaches Nash equilibrium, it does
not reach even 2-strong equilibrium. Any coalition can benefit by
having some of its agents stop sending messages, while others con-
tinue to participate in the protocol. When the protocol is finished,
the participating agents can send the results to the non-participating
agents, thus satisfying the knowledge preference. Thus, it is not
possible to reach k-strong equilibrium for k ≥ 2.

It is worth noting that, while the protocol does not reach k-strong
equilibrium for k ≥ 2, coalitions will not harm the result of the
protocol. Even when facing coalitions, the protocol still outputs a
legal result.

6.3 Anonymous Networks
Sometimes, distributed computing problems need to be solved in

anonymous networks—where agents have no ids.
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While our protocols use the ids of the agents in the wake-up and
output computation protocols, this is actually not always necessary.
In synchronous networks, for problems which don’t require ids or
distinction among agents (such as the consensus problem), we can
use the paradigm in an anonymous network.

The protocols are mostly the same for both ring and complete
network. The only difference is that any messages with ids are sent
without ids, and the id part of the message is ignored.

This allows both the wake-up and the knowledge sharing proto-
cols to execute in much the same way, and then the output com-
putation protocol is executed on the data of the agents (d1, . . . ,dn)
alone, without the ids.

7. CONCLUSIONS AND FUTURE WORK
In this paper, we presented building blocks that are useful for

many common distributed problems. Additionally, we presented a
refined game-theoretic model for a distributed network. Our build-
ing blocks are built with this model in mind, such that the proto-
cols for these building blocks are all resilient in the face of rational
agents, and coalitions of rational agents to some extent.

One natural question that arises is how this model can be ap-
plied to dealing with general graphs in an asynchronous network.
General graphs pose some interesting challenges in the presence
of rational agents, especially if some agent or group of agents can
disconnect parts of the network. In 3.3 we proposed a protocol for
solving wake-up in general graphs, and in 4.5 we proposed a proto-
col for solving knowledge sharing in general graphs in synchronous
networks. We leave open the question of how the other building
blocks and algorithms presented in this paper can be adapted to
work in an asynchronous general graph network.

An additional network model which would be of interest is anony-
mous networks. In 6.3 we give some initial thoughts on solving the
wake-up and consensus problems in these types of networks and it
would be interesting to see how these can be improved.

We are currently exploring the problem of finding a minimum
spanning tree in networks with rational agents, and what might be
the natural preferences of rational agents in this problem setting.
Other fundamental problems of distributed computing might be of
interest, finding the natural preferences for each problem and de-
veloping new protocols, which are resilient to rational agents, for
these known problems.

Additionally, we are looking into devising algorithms for the fail-
stop model (left as an open question in [4]) which are resilient to
both the presence of rational agents and faulty agents which can fail
by stopping. An initial analysis of this model can be found in 6.2.
Another model of interest is that of Byzantine rational agents (also
left as an open question in [4]) in which an agent has a preference
on the outcome, but does not satisfy the solution preference and
prefers to fail the protocol if it does not benefit otherwise.
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